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Abstract Many algorithms and tools exist to help an expert map ex-
ercises and tasks to underlying skills. The last decade has witnessed a
wealth of data driven approaches aiming to refine expert-defined map-
pings of tasks to skill. This refinement can be seen as a classification
problem: for each possible mapping of task to skill, the classifier has to
decide whether the expert’s advice is correct, or incorrect. Whereas most
algorithms are working at the level of individual mappings, we introduce
an approach based on a multi-label classification algorithm that is trained
on the mapping of a task to all skills simultaneously. The approach is
shown to outperform the existing Q-matrix refinement techniques (such
as MinRSS, MaxDiff, Matrix Factorization).

Keywords: Student model, Skills modeling, Psychometrics, Q-matrix validation,
Multi-label skills assessment

1 Introduction

Intelligent tutoring systems rely on efficient methods to assess the skills to perform
tasks. These skills can involve factual knowledge, deep understanding of abstract
concepts, general problem solving abilities, practice at recognizing patterns and
situations, etc. Furthermore, a designer of a learning environment may focus on a
particular subset of these skills. It might be the subset that is deemed appropriate
for 10-12 years old kids endowed with a specific training. Or it might be a subset
that more closely relates to a given topical or pedagogical perspespective at the
expense of alternative perspectives. For example a tutor may not care much
about general problem solving abilities that require months to acquire, and focus
on factual knowledge and rules that are easier to teach and assess, even though
both the problem solving skills and factual knowledge are involved in the training
and assessment material.

Whathever the motivation is for defining the skills behind the successful
completion of tasks, a first point to emphasize is that for the same tasks, one skill
definition may be considered appropriate for one context whereas another will be
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required for another context. A second point to emphasize is that the definition
of skills behind tasks, or the converse, the definition of tasks for a given set of
skills, are non trivial and error prone processes.

Therefore, tools to help a tutor, or a designer of a learning environment,
validate a given mapping of skills to tasks would be highly valuable. Let us refer
to this endeavor as the problem of Q-matriz refinement, where the Q-matrix
represents the mapping of tasks to skills.

In this paper, we present a framework to help validate a Q-matrix called
Multi-Label Skills Refinement (MLSR). We describe the method, setup, analysis,
and results of a performance assessment of Q-matrix refinement.

This approach can be considered an ensemble technique, since it combines
refinements obtained from different algorithms to calculate its own refinements:
Minimal Residual Sum Square (MinRSS), Maximum Difference (MaxDiff) and
Conjunctive Alternating Least Square Factorization (ALSC). In addition, the
approach uses features obtained from a large number of simulations with the
refinements algorithms, and in particular an indicator of each algorithm’s error
rate over a given cell of the Q-matrix. The error rate computed from these
simulations by using synthetic data, for which the ground thruth is known.

The rest of this paper is organized as follow. Section 2 reviews the related work
on the Q-matrices and techniques to validate them from data. Section 3 combining
techniques with multi-label classification, Section 4 presents the measurement
methods. Experimental results are found in Section 5 and Section 6 concludes
and discusses future prospective.

2 Q-Matrices and Related work

Modelling and predicting how human beings learn is dealing with many fields as
diverse as neuroscience, education, psychology, and cognitive science. So assessing
latent skills influenced by complex macro level interactions is non obvious and
non traceable. The challenges present are further exposed on the micro level
interactions and factors. These all latent skills extracted from response matrix
(performance of students: students x tasks) and can decompose into two important
matrices: Q-matrix (tasks x skills) and P-matrix (students x skills) [1,2,14]. These
two matrices contains all information about how students response and how much
they will be able to perform their tasks.

Q-matrix : A mapping of items to skills is termed a Q-matrix [10,5,7]. An
example of a 11 items and 5 skills Q-matrix is given below, where item 4 requires
skill 1 only, whereas item 11 requires skill 2 and 4. If all specified skills are required
to succeed the item, the Q-matrix is conjunctive. If a any of the required skill is
sufficient to the item success is disjunctive.The compensatory corresponds to the
case where each required item increases the chances of success in some way [7].
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Table 1. Example of Q-matrix

2.1 Q-matrix Refinement techniques

Whereas we find a number of techniques to derive Q-matrices entirely from
from data (for eg. [1,2,14]), the current study focuses on a related problem:
refining expert-given Q-matrices from data. The two techniques are closely
related. The main difference can generally be considered as one of starting points:
entirely data-driven Q-matrix definition starts from a random state, or from
some predetermined state, whereas refinement techniques start from the expert’s
Q-matrix. However, very often, the general algorithms are the same.

We chose to use three Q-matrix refinement techniques that were studied in
[7,4] for the purpose of comparison. They are described below.

MinRSS : Minimal Residual Sum Square (MinRSS) is from [3,7].A given Q-
matrix, It provides an ideal response pattern for a given a student skills mastery
profile. This ideal response pattern sigificantly relies on Q-matrix given student
profile. That is, if there are no slip and guess factors, then the response pattern
for every profile of student is fixed. Measuring the difference between the real
response pattern and the ideal response pattern give us a value to fit for the
Q-matrix. The most common meausrement for vector is Hamming distance, that
is

dn(r,m) = Z 7 — n;l 1)

where r is the real response vector while 7 is the ideal response vector. J is the
number of latent skills. chiu et al. [3] leads us to a more refined metric. The idea
is if an item has a smaller entropy, then it should be given higher weight. The
formula is

J
don(r) = (11_p)| — (2)

where p; is the proportion of correct answers of item j. Equipped with this
metric, we can find the most approximate ideal response matrix and then find
the corresponding profile matrix A. First, a squared sum of errors for each item
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k can be computed by
N

RSS, = Z(Tzk — i )? (3)

i=1

where N is the number of examinees or respondents. Then, the item with the
highest R.SS is chosen to minimize with it’s correspondent g-vector. All the other
possible g-vectors are calculated their RSS and the g-vector giving the lowest
RSS is chosen to replace the original one. This method called minRSS. The Q-
matrix is updated during the whole process repeated, but the previously changed
g-vector is eliminated from the next round of running. The whole procedure
terminates until the RSS for each item no longer changes. This method was
proposed by [17] to yield good performance under different underlying conjunctive
models.

MaxDiff : According to DINA model, for every item j, there are two model
parameters called, slip s; and guess g;. de la Torre et al. [14,7] proposed that a
correctly specified g-vector for item j should maximize the difference of probabil-
ities of correct response between examinees who possess all the required skills
and those who do not. That is, g; is the correct g-vector if

gj = argmax[P(X; = 1|gn = 1) — P(X; = 1|gw = 0)]
l (4)

= argmax/[d;]
a

where &) = Hszl ay ik for K total number of skills. An interesting observation
is that since P(X; = 1§y = 1) =1 —s; and P(X; = 1|y = 0) = g;, then

q; = arg H}f}x[l — (85 +95)]

that is, repeatedly maximizing the difference is equivalent to minimize the sum
of the slip and guess parameters iteratively. A original idea is to test all g-vectors
to find the maximum 65 but that is computationally unefficient. de la Torre et
al. [14] proposed a greedy algorithm that adds skills into a g-vector sequentially.
First, ¢ is calculated for all g-vectors which contains only one skill and the
one with biggest d; is chosen. Then, §;; is calculated for all g-vectors which
contains two skills including the previously chosen one. Again the g-vector with
the biggest d;; is chosen. This whole process is repeated until no addition of skills
increases ¢;;. However, this algorithm requires knowledge of s; and g; in advance.
They are calculated by EM (Expectation Maximization) algorithm [15].

ALSC : ALSC (Conjunctive Alternating Least Square Factorization) is a com-
mon matrix Factorization (MF). Desmarais et al. [6,7] proposed to factorize
student test results into a Q-matrix and a profile matrix by using ALSC.
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Contrary to the other two methods, it has no slip and guess parameters.
ALSC decomposes the results matrix R,,x, of m items by n students as the
inner product two smaller matrices:

-R=Q-S (5)

where =R is the negation of the results matrix (m items by n students), Q is
the m items by k skills Q-matrix, and =S is negation of the the mastery matrix
of k skills by n students (normalized for rows columns to sum to 1). By negation,
we mean the 0-values are transformed to 1, and non-0-values to 0. Negation is
necessary for a conjunctive Q-matrix.

The factorization consists of alternating between estimates of S and Q until
convergence. Starting with the initial expert defined Q-matrix, Qq, a least-squares
estimate of S is obtained:

-So=(QI Qo) 'Qf R (6)

Then, a new estimate of the Q-matrix, Ql, is again obtained by the least-squares

estimate:
Qi =-R-S; (=So=Sg) ™" (7)
iteratively until convergence. Alternating between equations (6) and (7) yields pro-

gressive refinements of the matrices QZ and S; that more closely approximate R
in equation (5). The final Q; is rounded to yield a binary matrix.

3 Multi-Label Skills Refinement

Each of the three techniques described above, MinRSS, MaxDiff, and ALSC, uses
a substantially different algorithm from the others to refine a Q-matrix. In that
respect, their respective outcome may be complementary, and we can hypothesize
that they can be combined to provide a more reliable output than any single
one. Furthermore, some algorithms are more effective in general, but may not be
the best performer in all context. Defining the features that that allows learning
which algorithm provides the most reliable outcome in a given context is another
objective of combining these techniques.

We first describe the data on which the multi-label skill refinement techniques
are trained, and then describe the two algorithms that use this data.

3.1 Data to train the muti-label skills refinement algorithms

Let us introduce some notations used in this study. Given an instance X and its
associated label set I; C |L|, where its I; component of |L| takes the value of 1 if
l; € |L| and 0 otherwise. In addition, let N(z) denote the set of x identified in
the training set.

Table 2 contains an excerpt of data used to train the multi-lable skills
refinenent algorithms. Each line is a record for a single item to skills mapping.
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The rightmost columns contain the true labels. The left columns contain the
suggested refinements from the different algorithms and factors that may provide
information about the most reliable technique refinement in a given context.
They are:

Stickiness is the proportion of more likely possible truly classified cells in
iteratively refined matrices from any type of pertubation.
T
r
Stickiness = 2T #P) (8)
T
where 7 is the cells in refined matrix and p is the cells in pertubated matrix. T is
the number of times they iterate according to number of rounds we predefined.
(In this experiment, we used total number of cells in matrices are defined as their
round number).

Skills per row indicates the number of skills required for Items. An item may
contain one or more skills.

Skills per column is the sum of the skills per columns. an indicator of how
often this skill is required by the different items of the Q-matrix.

Item Min.s1 Min.s2 Min.s3 St.Min.sl St.Min.s2 St.Min.s3 ...|true.sl true.s2 true.s2
1 1 1 0 0.04 0.04 0.00 1 1 0
2 0 1 0 0.00 0.06 0.10 0 1 1
3 1 1 1 0.20 0.05 0.00 1 0 1
4 1 0 0 0.04 0.04 0.20 1 0 0
5 1 0 1 0.00 0.04 0.04 1 0 1

Table 2. Example of data set used for multi-label classification

3.2 Multi-Label Skills Algorithms

We transform the outputs and latent factors from three data driven techniques
into multi-label classification problem. After that we use accumulated data from
synthetic 1000 permutated matrices for training and use real data for testing, the
procedures for data generation of training and testing are shown in Fig: 2. Finally
we use multi-label classification for prediction of skills for each items. Generality of
multi-label problems significantly makes it more complex to solve than traditional
single-label (two-class or multi-class) problems. Only a few studies on multi-label
learning are reported in the literature, which mainly concern the problems of text
categorization, bioinformatics and scene classification. In this study, we conduct
two multi-label classification methods: binary relevance method (Classifier chain
method) [11] by using Naive Bayes classifier, and RAndom k-labELsets(Ensemble
method) [16] by using J48 decision tree algorithm for our skills refinement tasks.
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Figure 1. Refinement Procedure of each Q-Matrix QM;

Binary Relevance method with Naive Bayes The strategy of problem
transformation is to use the one-against-all strategy by converting the multi-label
problem into several binary classification problems. This approach is known as the
binary relevance method (BR) [11]. A method closely related to the BR method
is the Classifier Chain method (CC) proposed by Read et al. [11]. This method
involves @ binary classifiers linked along a chain. BR transforms any multi-label
problem into one binary problem for each label. Hence this method trains ||
binary classifiers C1, ..., C|r|. Each classifier Cj is responsible for predicting the
0/1 association for each corresponding label [; € L.

BR with Naive Bayes (NB) method make NB classifiers are linked in a chain,
such that classifier for /; in chain considers the classes predicted [1, o, ..., [;_1 from
the previous classifiers as additional attributes. Thus, the feature vector for each
binary classifier is extended with the class values (labels) of all previous classifiers
in the chain. Each classifier in the chain is trained to learn the association of
label L; given the features augmented with all previous class labels in the chain,
C1; C1; Co;...; O |- At classification time, the process starts at (', and propagates
the predicted classes along the chain such that for C; it computes:

P(ll) :argmlaxP(MX,ll,lg,,ll,l) (9)

RAndom k-labELsets with J48 The ensemble methods for multi-label learn-
ing are developed on top of the common problem transformation or algorithm
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adaptation methods. The most well known problem transformation ensembles
are the RAndom k-labELsets (RAKEL) system by Tsoumakas et al. [16]. RAKEL
constructs each base classifier by considering a small random subset of labels
and learning a single-label classifier for the prediction of each element in the
power-set of this subset that transformed form multi-label problem.

In here, single-label J48 classifier, an optimized implementation of the C4.5
or improved version of the C4.5. J48 constructs Decision tree as an output.
A Decision tree have same structure as tree that have different types of node,
such as root node, intermediate nodes and leaf node. Each node in the tree
containing constraints and that constraint leads to our result as name as decision
tree. Decision tree divides the input space of a dataset into mutual exclusive
areas, where each area having a class of labels, a value or an action to describe or
elaborate its nodes of data. Splitting criterion is used in decision tree to determine
which attributes are the optimal to split into portion of tree given training data.

4 Evaluation measurement principle

The evaluation of methods for multi-label data requires different measure-
ment than those used in the case of single label data. For the definitions of
these measures we will consider an evaluation data set of multi-label examples
(z4,Y;),i = 1..m, where Y; C L is the set of true labels and Z; is the set of
predicted labels. This section presents two group of measurements [8] that will
be used in this experiment for the evaluation of our method.

— Example based measurement: are calculated over all examples of the evalu-
ation data set, that based on the average differences of the actual and the
predicted sets of labels.

4.1 Example based Measurement

Hamming Loss : is measurement of how many times an instance label set is
misclassified, i.e. a label not belonging to the instance is predicted or a label
belonging to the instance is not predicted. The performance is perfect when
HammingLoss = 0; the smaller the value of HammingLoss, the better the
performance:

| Z; AY;|

% (10)

1 m
HammingLoss = — E
m
i=1

where A stands for the symmetric difference between two laebel sets. which is
the theoretic equivalent of the exclusive disjunction (XOR operation) in Boolean
logic for sets.
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Subset Accuracy To calculate the accuracy of vector of labels is truely classified.
Subset Accuracy is defined as follows:

1 m
Subset A = — 1(Z; =Y; 11
ubset Accuracy = — Z ( ) (11)

Example based F-score : are calculated based on the average differences of
the actual and the predicted sets of labels over all examples of the evaluation
data set. The performance is perfect when ExamplebasedF — score = 1; the
bigger the value ,the better the performance:

2Y; N Zi|

OneError = Z ZI+ V)

(12)

5 Experimental Study

For the sake of comparison, we use the same datasets as the ones used in Desmarais
et al. (2015) [13,7]. Table 3 provides the basic information and source of each
dataset.

Table 3. Q-matrix for validation & explantion of category

. Number of e e
Q-matrices SKiTls Troms Cases Description

QM1 3 11 536 Expert driven from
[9]

QM2 5 11 536 Expert driven from
[14]

QM3 3 11 536 Expert driven from
[12]

QM4 3 11 536 Data driven, SVD
based

and number of 1,2, 3,4 along with algorithms in results of our experiment
represent the categories of number of features they contained respectively.

: contains item number, outputs from three different basic algorithms
: contains item number, stickiness factors from three different algorithms
: contains combination of item number, outputs, row sum and column sums.

W N =

: contains combination of item number, outputs,stickiness factors, row sum
and column sums.
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Figure 2. Data Generation Procedure of each Q-Matrix QM;

For this experiment, We produced synthetic datasets that contains outputs
and latent factors from 1000 permutated matrices of QM-1 (3 skills) and QM-2
(5 skills) by using 400 response data and each permutated matrix is refined from
matrices with one cell pertubation for every single cell in it. We trained the
classifier with synthetic datasets from one cell pertubated Q-matrices and test
over real datasets of multiple pertubted cells (ranged from 1 to 10).

QM| MinRSS MaxDiff ALSC RAKBL(1) BR(1) RAKEL(2) BR(2) RAKEL(3) BR(3) RAKEL(4)
qm1[0.53 £ 0.00]0.09 £ 0.00[0.54 £ 0.00|0.00 £ 0.00/0.00 & 0.00]0.00 £ 0.00[0.00 & 0.00]0.00 £ 0.00[0.00 £ 0.00|0.00 £ 0.00
qm2|0.42 £ 0.00[0.41 & 0.00|0.44 + 0.00[0.00 & 0.00{0.01 £ 0.00[0.00 & 0.00|0.09 £ 0.00[0.00 % 0.00|0.01 #+ 0.00|0.00 % 0.00
qm3|0.63 £ 0.00[0.64 & 0.00|0.55 £ 0.00[0.00 & 0.00{0.00 £ 0.00[0.00 & 0.00|0.03 £ 0.00[0.00 % 0.00|0.00 #+ 0.00|0.00 % 0.00
qm40.58 + 0.00[0.59 & 0.00]0.53 + 0.00[0.00 4 0.00|/0.00 + 0.00[0.00 & 0.00]0.25 + 0.01[0.00 & 0.00]|0.00 + 0.00|0.00 % 0.00

Table 4. Hamming Loss result of Synthetic data

In this experiment, the result of various algorithms with different types of
individual or combination with outputs and latent features are represented. For
testing synthetic datasets, we use 10 fold cross validation and, we use train/test
setting in testing our real datasets. We proved that optimal performance of our
refinement methods with series of measurements for synthetic dataset and testing
with real datasets. We use Hamming loss, Subset Accuracy and Example based
F-measure to measure prediction performance on vector of skills.
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QM| MinRSS MaxDiff ALSC RAKBL(1) BR(1) RAKEL(2) BR(2) RAKEL(3) BR(3) BR(4)

qml[0.19 & 0.00[0.85 £ 0.00[0.18 & 0.00[1.00 £ 0.00{0.98 £ 0.00[1.00 & 0.00[1.00 £ 0.00[1.00 & 0.00[0.98 &£ 0.00 0.99 + 0.00

qm2[0.24 + 0.00{0.25 £+ 0.00|0.13 £ 0.00|1.00 + 0.00({0.93 + 0.00[1.00 £ 0.00(0.73 £ 0.00|1.00 &+ 0.00[0.94 + 0.00 0.98 4+ 0.00

qm3[0.00 + 0.00{0.02 £ 0.00/0.00 £ 0.00(1.00 + 0.00|1.00 £ 0.00|1.00 £ 0.00[0.91 + 0.00|1.00 £ 0.00|1.00 % 0.00 1.00 £ 0.00

qm4[0.07 + 0.00{0.08 £ 0.00/0.04 £ 0.00/1.00 4+ 0.00[0.98 + 0.00[1.00 £ 0.00/0.50 £ 0.05[1.00 4 0.00[0.98 + 0.00 0.98 + 0.00
Table 5. SubSet Accuracy result of Synthetic data

QM| MinRSS MaxDiff ALSC RAKEL(1) BR(Q) RAKEL(2) BR(2) RAKEL(3) BR(3)

qml [0.54 & 0.00|0.90 & 0.00|0.54 £ 0.00|1.00 = 0.00{0.99 £ 0.00[1.00 £ 0.00|1.00 4 0.00|1.00 £ 0.00(0.99 + 0.00

qm2[0.68 & 0.00|0.71 4 0.00[{0.64 £ 0.00|1.00 & 0.00{0.99 £ 0.00(1.00 £ 0.00|0.92 4 0.00|1.00 £ 0.00(0.99 &+ 0.00

qm3[0.06 & 0.00|/0.10 £ 0.00{0.16 £ 0.00|1.00 & 0.00|1.00 £ 0.00(1.00 £ 0.00|0.96 4 0.00{1.00 £ 0.00(1.00 % 0.00

qm4[0.37 + 0.00|/0.37 4+ 0.00[0.42 + 0.00/1.00 + 0.00[{1.00 £ 0.00|1.00 + 0.00|0.66 4+ 0.02|1.00 £ 0.00(1.00 + 0.00

Table 6. Macro averaged F-measure result of Synthetic data

The experimental results on each evaluation criterion are reported in Tables
[4,5,6] for synthetic data and in Figures [3,4,5] for real data, where the results
from three basic algorithms are in black lines and multi-label skill refinement
methods are in color lines on each Q-matrix. According to results, applying multi-
label skill refinement outperforms than three basic algorithms. For Synthetic
data, most of multi-label skill refinement methods can recover over 99% for all
Q-matrices and even the performance reaches 100% of subset accuracy and macro
averaged F-measure.

For real data, Among those multi-label skill refinement methods, BR by using
category 1 and category 2 of data show the best performance. The performance
of all these methods will decline with numbers of pertubation because of the
synthetic data sets that we trained with one cell pertubated dataset can not
handle the noises from real data sets with multiple cells (1 to 10) pertubation.
One caveat of our method is, it can not be used under condition of the whole
column is 1, For instance, skill-1 is required for all tasks. we do not need to
consider whether this skill-1 is required for which tasks. In our experiment, Skill-1
of QM-1 is such type of skill, so we ignore that skill when we do prediction and
evaluation. When we have few number of labels, the method didn’t show its
optimal performance. If we compare QM-2 to QM-1, QM-3 and QM-4. It show
better performance in QM2 compared to others because of QM-2 have 5 skills
and others only have 3 skills. In QM-1, we only predict 2 skills for multi-label
classification, it shows lower performance than QM-3 and QM-4. So we can
conclude that if we have to predict more skills, the methods are more effective.

6 Conclusion & Future Work

In this paper, we represent the multi-label skill refinement method, that combines
three data driven techniques and each of two multi-label classification techniques
to assess the skills required for tasks of students. Experiment with 3 expert driven
Q-matrices and 1 Q-matrix driven form SVD, shows proposed refinement methods
outperform than three well known algorithms in literature and can recover more
accurate skill vector in Q-matrix when it only contains noises as same as when
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we trained. Therefore, it is interesting to see how this method would perform
in when we give enough noises in training, dealing with non-binary Q-matrices,
skills varying over time.The another biggest challenge is finding out micro level
influences over these skills. This particular study was highly facilitated by the
CDM [12]and NPCD packages which provided both the code for three basic data
driven techniques and the data, and mulan [8] for multi-label classification.
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