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Abstract— Inspired by successful biological collective decision
mechanisms such as honey bees searching for a new colony or
the collective navigation of fish schools, we consider a mean
field games (MFG) scenario producing decentralized homing
decisions in large multi-agent systems. For our setup, we show
that given an initial distribution of the agents, many strategies
exist, with each one of them defining an ε−Nash equilibrium.
These strategies, on which the processes of consensus and dis-
agreement within the group depend, collapse into one strategy
as the number of agents goes to infinity.

I. INTRODUCTION

Collective decision making in large groups occurs when
individuals agree on a choice among several alternatives.
This phenomenon exists in most social aggregations, e.g.,
in economic systems, biological populations [1], [2], or
human societies. Important examples of successful biological
collective decision making mechanisms include honey bees
searching for a new colony [3], [4], the collective navigation
of fish schools [5], [6], or quorum sensing [7].

Two important properties characterize such biological sys-
tems. The first is the aggregation property where, despite
their inherent selfishness, the agents need to remain close,
with the primary benefits being protection from predators
(in the case of fish shoals) or enhanced foraging ability (in
the case of honey bees). The second is the decentralized
control of the agents’ behaviors, which seems to be highly
developed in advanced eusocial species (species hierarchi-
cally organized) of population on the order of 103 or larger,
whereas centralized control is adopted in primitive eusocial
species of population on the order of 102 or less [3]. The
reason behind distributing the control among the individuals
of a large population is to minimize communication and
computational requirements and to maintain cohesiveness of
the group in the face of potentially selfish behavior of some
of its individuals.

In this paper, we consider a situation where a large number
of agents, initially spread out in Rn, need to move within
a finite time horizon to one of two possible home or target
destinations. They must do so while trying to remain tightly
grouped, and expending as little control effort as possible.
For example, in a navigation situation for a collection of mi-
cro robots exploring an unknown terrain, remaining grouped
may be necessary for achieving coordinated collective tasks
[8]–[11]. In animal collective navigation, staying within a
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large group offers better protection against predators. Finally,
this model may be an abstract representation of opinion
crystallization in an election where (i) relative distances
measure current differences of opinions, (ii) individuals are
sensitive to collective opinion swings, and (iii) a choice must
be made before a finite deadline [12]–[14].

II. MATHEMATICAL MODEL

In this section, we present the mathematical formulation
of our problem. Consider N agents, with identical and
independent linear dynamics

ẋi = Axi +Bui, x0i ∈ Rn, ui ∈ Rm, (1)

for i = 1, . . . , N . These agents must migrate in a finite time
interval [0, T ], from their initial positions toward one of two
predefined destinations pa, pb ∈ Rn, while minimizing the
cost

Ji(ui, x̄, x
0
i ) =

∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
dt

+
M

2
min

(
‖xi(T )− pa‖2, ‖xi(T )− pb‖2

)
(2)

with q, r,M > 0. The running cost in (2) penalizes the
control effort as well as individual deviations from the
population mean

x̄ :=
1

N

N∑
i=1

xi.

Moreover, the terminal cost strongly penalizes deviations
from either pa or pb (M is large).

The agents minimizing (2) are cost coupled. The optimal
control law u∗i of each agent depends on the state of the
population (x1, . . . , xN ). Hence, the exact optimal solution
of (2) requires compilcated centralized data when N is
large. Alternatively, by working within the framework of the
Mean Field Games (MFG) theory [8], [15]–[19], we develop
decentralized strategies where each agent only needs to know
the initial distribution of the population and its own state. The
resulting solutions are ε−Nash equilibria instead of exact
Nash solutions.

As described in [15], [16], [19], the MFG approach starts
by approximating the mass behaviour x̄ by an assumed
known function x∗. This unknown trajectory x∗ is calculated
by requiring that it can be replicated by the mean of all agents
when they optimally track it.

The rest of the paper is organized as follows. In Section
III we develop the solution to the general tracking problem
for any continuous path x∗. We establish that the choice



of destinations pa or pb by a given agent is dictated by its
initial condition and two basins of attraction exist. In Section
IV we characterize these basins of attraction. In Section
V we tackle the problem of identifying conditions for the
existence of a trajectory x∗ reproducing a mean x̄ = x∗. We
also prove that the strategies developed when tracking these
trajectories constitute an ε−Nash equilibrium. In Section VI
we provide some numerical simulation results, while Section
VII presents our conclusions.

III. GENERAL TRACKING PROBLEM

Following the MFG approach, in this section we start by
solving the following tracking problem. The N agents with
dynamics (1) minimize the cost function

Ji(ui, x
∗, x0i ) =

∫ T

0

{q
2
‖xi − x∗‖2 +

r

2
‖ui‖2

}
dt

+
M

2
min

(
‖xi(T )− pa‖2, ‖xi(T )− pb‖2

)
(3)

which corresponds to (2) with x̄ replaced by some assumed
known continuous path x∗. Note that the cost function Ji
can be written

Ji(ui, x
∗, x0i ) = min

(
Jai (ui, x

∗, x0i ), J
b
i (ui, x

∗, x0i )
)
,

where

Jei (ui, x
∗, x0i ) =

∫ T

0

{q
2
‖xi − x∗‖2 +

r

2
‖ui‖2

}
dt

+
M

2
‖xi(T )− pe‖2,

for e = a or b. Moreover, we have

inf
ui(.)

Ji(ui, x
∗, x0i )

= min

(
inf
ui(.)

Jai (ui, x
∗, x0i ), inf

ui(.)
Jbi (ui, x

∗, x0i )

)
.

Assuming a full state feedback, the optimal control for (3)
is

u∗i =

{
uai if Jai (uai , x

∗, x0i ) ≤ Jbi (ubi , x
∗, x0i )

ubi if Jai (uai , x
∗, x0i ) > Jbi (ubi , x

∗, x0i ),

where uai and ubi are the optimal solutions of the simple
linear quadratic tracking problems with cost functions Jai
and Jbi , for which we recall [20] the optimal control laws

uei (t) = −1

r
BT
(
α(t)xi + βe(t)

)
, ∀e ∈ {a, b},

and the corresponding optimal costs

Je,∗i (x∗, x0i ) =
1

2
(x0i )

Tα(0)x0i + βe(0)Tx0i + δe(0),

where α ∈ C([0, T ],Rn×n), βe ∈ C([0, T ],Rn) and δe ∈
C([0, T ],R) are the unique solutions of

α̇− 1

r
αBBTα+ αA+ATα+ qIn = 0 (4a)

β̇e = (
1

r
αBBT −AT )βe + qx∗ (4b)

δ̇e =
1

2r
(βe)TBBTβe − 1

2
q x∗Tx∗, (4c)

with the final conditions

α(T ) = MIn, βe(T ) = −Mpe, δe(T ) =
1

2
MpTe pe.

We summarize the above analysis in the following lemma.
Lemma 1: The tracking problem (3) has a unique optimal

control function

u∗i (t) =

−
1
rB

T
(
α(t)xi + βa(t)

)
if x0i ∈ Da(x∗)

− 1
rB

T
(
α(t)xi + βb(t)

)
if x0i /∈ Da(x∗)

(5)

where α, βe, δe are the unique solutions of (4a)-(4c) for
e = a, b, and

Da(x∗) ={
x ∈ Rn;

(
βa(0)− βb(0)

)T
x ≤ δb(0)− δa(0)

}
(6)

Hence, given any continuous path x∗, there exists a basin
of attraction Da(x∗) where all the agents initially present in
this region prefer going toward pa whereas the others prefer
going toward pb. Therefore, the mean of the population is
highly dependent on Da(x∗). In the next section we study
the properties of this basin in more details.

Remark 1: We conventionally impose pa as a destination
for the agents initially present on the boundary of Da(x∗).

IV. BASIN OF ATTRACTION

We start by giving an explicit solution of (4b) and (4c).
Let K(t) = 1

rα(t)BBT −AT and φK be the state-transition
matrix of (4b). Thus,

βe(t) = −MφK(t, T )pe + q

∫ t

T

φK(t, σ)x∗(σ) dσ

δe(t) =
1

2
MpTe pe −

q

2

∫ t

T

(x∗)T (σ)x∗(σ) dσ

+
M2

2r
pTe

∫ t

T

{
φTK(η, T )B

BTφK(η, T )

}
dη pe

− Mq

r
pTe

∫ t

T

∫ η

T

{
φTK(η, T )BBT

φK(η, σ)x∗(σ)

}
dσdη

+
q2

2r

∫ t

T

∫ η

T

∫ η

T

{
(x∗)T (σ)φTK(η, σ)B

BTφK(η, τ)x∗(τ)

}
dτdσdη

(7)

Finally, by replacing (7) in the expression of Da(x∗), (6)
can be written

Da(x∗) =
{
x ∈ Rn;βT0 x ≤ δ0 + δ1(x∗)

}
(8)

where
β0 = MφK(0, T )(pb − pa)

δ0 =
1

2
MpTb pb −

1

2
MpTa pa

+
M2

2r
pTb

∫ 0

T

φTK(η, T )BBTφK(η, T ) dη pb

− M2

2r
pTa

∫ 0

T

φTK(η, T )BBTφK(η, T ) dη pa

δ1(x∗) =
Mq

r
(pTa − pTb )

∫ 0

T

∫ η

T

{
φTK(η, T )BBT

φK(η, σ)x∗(σ)

}
dσdη

(9)



V. FIXED POINTS AND NASH EQUILIBRIA

Having solved the general tracking problem, we now seek
a continuous path x∗ that can be replicated by the mean of
all agents when they optimally track it. We start our search
by computing the dynamics of the mean x̄ when tracking
any continuous path x∗. We then show that this mean is
the image of x∗ by a map Tλ, where λ is the number
of agents initially in Da(x∗) and Tλ is an element of a
more general familly of maps (Tk)k∈{1,...,N}. Based on this
analysis, the sought path x∗ is a fixed point of Tλ, where λ is
the number of agents initially in Da(x∗). In order to identify
such a path, we first prove in Lemma 2 the existence and
uniqueness of a fixed point of any Tk ∈ (Tk)k∈{1,...,N} and
we derive its explicit form. Then, we define in Theorem 3
a necessary and sufficient condition for the existence of the
desired path. This condition is a direct consequence of the
following observation: The mean is a fixed point of Tλ if and
only if λ is the number of agents initially in Da(x∗). Finally,
we prove in Theorem 4 that the control strategies developed
while tracking this path constitute an ε−Nash equilibrium.

We consider x∗ ∈ C([0, T ],Rn). By Lemma 1, there
exists a region Da(x∗) such that, while tracking x∗, the
agents initially present in this region select the control law
− 1
rB

T (αx + βa) , whereas the others select the control
law − 1

rB
T (αx + βb). Suppose that initially λ agents are

in Da(x∗). The dynamics of the mean

˙̄x = −KT x̄− q

r
BBT

∫ t

T

φk(t, σ)x∗(σ) dσ

+
M

r
BBTφK(t, T )pλ (10)

with x̄(0) = x̄0, pλ = λ
N pa + N−λ

N pb, is obtained by
substituting (7) in (5) and the resulting control law in (1) to
subsequently compute x̄ = 1

N

∑N
i=1 xi and its derivative. We

define for any λ ∈ {0, ..., N} a map Tλ from C([0, T ],Rn)
to C([0, T ],Rn), where Tλ(x∗) is the unique solution of (10).
Hence, x̄ is the image of x∗ by Tλ where λ is the number of
agents initially in Da(x∗). The next lemma establishes that
for any λ ∈ {0, ..., N}, Tλ has a unique fixed point.

Lemma 2: Consider λ ∈ {0, ..., N}. Tλ has a unique fixed
point equal to

R1(t)x̄0 +R2(t)pλ (11)

where R̃1 = φTK(t, 0)R1(t) and R̃2 = φTK(t, 0)R2(t) are the
unique solutions of

˙̃R1 = −q
r

∫ t

T

{
φTK(t, 0)BBTφK(t, σ)

φTK(0, σ)R̃1(σ)

}
dσ

˙̃R2 = −q
r

∫ t

T

{
φTK(t, 0)BBTφK(t, σ)

φTK(0, σ)R̃2(σ)

}
dσ

+
M

r
φTK(t, 0)BBTφK(t, T )

(12)

with initial conditions R̃1(0) = In, R̃2(0) = 0.
Proof: Let Wλ = L2 ◦ Tλ ◦ L1, where L1 and L2

are operators from C([0, T ],Rn) to itself such that ∀x ∈

C([0, T ],Rn), L1(x)(t) = φTK(0, t)x(t) and L2(x)(t) =
φTK(t, 0)x(t). Tλ has a unique fixed point if and only if Wλ

has. Let x ∈ C([0, T ],Rn),

Wλ(x)(t) = g(t)pλ + x̄0 +

∫ t

0

∫ τ

T

f(τ, σ)x(σ) dσdτ

where f(t, σ) = − qrφ
T
K(t, 0)BBTφK(t, σ)φTK(0, σ) and

g(t) = M
r

∫ t
0

φTK(τ, 0)BBTφK(τ, T ) dτ . Let ‖.‖∞ be the
sup norm on C([0, T ],Rn×n). We define on the Banach
space

(
C([0, T ],Rn×n), ‖.‖∞

)
R1k = In +

∫ t

0

∫ τ

T

f(τ, σ) dσdτ+∫ t

0

∫ τ

T

∫ σ

0

∫ τ1

T

f(τ, σ)f(τ1, σ1) dσ1dτ1dσdτ+

...∫ t

0

∫ τ0

T

. . .

∫ σk−1

0

∫ τk

T

k∏
i=0

f(τi, σi) dσkdτk . . . dσ0dτ0

R2k = g(t) +

∫ t

0

∫ τ

T

f(τ, σ)g(σ) dσdτ+∫ t

0

∫ τ

T

∫ σ

0

∫ τ1

T

f(τ, σ)f(τ1, σ1)g(σ1) dσ1dτ1dσdτ+

...∫ t

0

∫ τ0

T

. . .

∫ σk−1

0

∫ τk

T

k∏
i=0

f(τi, σi)g(σk) dσkdτk . . . dσ0dτ0

Let S = max
(t,σ)∈[0,T ]2

‖f(t, σ)‖

‖R1l −R1k‖∞ ≤

Sk+2

∫ t

0

∫ T

0

. . .

∫ σk

0

∫ T

0

dσk+1dτk+1 . . . dσdτ

...

+ Sl+1

∫ t

0

∫ T

0

. . .

∫ σl−1

0

∫ T

0

dσldτl . . . dσdτ

⇒ ‖R1l −R1k‖∞ ≤
S(STt)k+1

(k + 1)!
+ · · ·+ S(STt)l

l!

⇒ lim
k,l→+∞

‖R1l −R1k‖∞ = 0

Hence, R1k is a Cauchy sequence in the Banach space
(C([0, T ],Rn×n), ‖.‖∞), therefore has a limit R̃1. Using
similar arguments, we prove that R2k has a limit R̃2. Let
y(t) = R̃1(t)x̄0 + R̃2(t)pλ. y is a fixed point of Wλ, and
every fixed point of Wλ is equal to y. Hence, y is the unique
fixed point of Wλ, and x = L1(y) is the unique fixed point
of Tλ. By the same technique used to prove the existence
and uniqueness of the fixed point of Wλ, we prove that R̃1

and R̃2 are the unique solutions of (12).
Suppose now that the desired path x∗ exists. This path is
equal to the mean x̄. Suppose that there exists initially λ



agents in Da(x∗), therefore x∗ = x̄ is the unique fixed point
of Tλ. By Lemma 2, we know the form of x∗. By combining
these facts, we elaborate in the next theorem a necessary
and sufficient condition on the number of agents initially in
Da(x∗) for the existence of the desired path. We define

θ1 =
Mq

r
(pTa − pTb )×∫ 0

T

∫ η

T

{φTK(η, T )BBTφK(η, σ)(
R1(σ)x̄0 +R2(σ)pb

)}dσdη

θ2 =
Mq

Nr
(pTa − pTb )×∫ 0

T

∫ η

T

{
φTK(η, T )BBTφK(η, σ)

R2(σ)(pa − pb)

}
dσdη

In order to facilitate the remaining analysis, we index the
agents going toward pa by numbers lower than those given
for agents going toward pb as follows.

βT0 x
0
1 ≤ βT0 x02 ≤ · · · ≤ βT0 x0N (13)

Theorem 3: A path x∗ that can be replicated by the mean
of all agents optimally tracking it exists if and only if ∃λ ∈
{0, ..., N} such that:

βT0 x
0
λ − δ0 − θ1 ≤ λθ2 < βT0 x

0
λ+1 − δ0 − θ1 (14)

x∗ is in this case the unique fixed point of Tλ.
Proof: Suppose that there exists a path x∗ that can be

replicated by the mean of all agents when optimally tracking
it (x̄ = x∗). Hence, x̄ is the image of x∗ by Tλ where λ ∈
{0, ..., N} is the number of agents in Da(x∗). But x̄ = x∗,
therefore x∗ is the unique fixed point of Tλ which is given
by (11). By replacing (11) in the third equation in (9) we
obtain δ1(x∗) = θ1 + λθ2. By the indexing adopted in (13),
the first λ agents are in Da and the others outside. Hence,
by the definition of Da(x∗) (8) we obtain:

βT0 x
0
λ ≤ δ0 + δ1(x∗)

βT0 x
0
λ+1 > δ0 + δ1(x∗)

⇒ βT0 x
0
λ − δ0 − θ1 ≤ λθ2 < βT0 x

0
λ+1 − δ0 − θ1

Suppose now that ∃λ ∈ {0, ..., N} satisfying (14). We define
x∗ as the unique fixed point of Tλ which is given by (11).

⇒ δ1(x∗) = θ1 + λθ2

By (13) and (14)

∀n ≤ λ, βT0 x0n − δ0 − δ1(x∗) ≤ βT0 x0λ − δ0 − δ1(x∗) ≤ 0

∀n ≥ λ+1, βT0 x
0
n−δ0−δ1(x∗) ≥ βT0 x0λ+1−δ0−δ1(x∗) > 0

Hence, by (8) there exists initially λ agents in Da(x∗).
Therefore x̄ = Tλ(x∗). But x∗ is the unique fixed point
of Tλ, hence x̄ = x∗.

We developed in the above analysis decentralized control
strategies by approximating the trajectory of the average of
the population x̄ by an assumed known function x∗ and
we found explicitly the form of this function in Lemma

2. To implement these strategies each agent needs to know,
prior start moving, the anticipated mean trajectory and, while
moving, its own state. How are these strategies related to
the inital global cost (2)? In the next theorem we show
that instead of defining an optimal solution for (2), the
decentralized strategies contitute an ε−Nash equilibrium
with respect to (2). This type of equilibria makes the group’s
behaviour robust in the face of potential selfish behaviours.
Indeed, in a decentralized mode, choosing strategies other
than those defining an ε−Nash-equilibrium is not profitable
(for small ε) as the next definition shows [15].

Definition 1: Consider N players, a set of strategy profiles
S = S1 × · · · × SN and for each player k a payoff
function Jk(u1, . . . , uN ), ∀(u1, . . . , uN ) ∈ S. A strategy
(u∗1, . . . , u

∗
N ) ∈ S is called an ε−Nash equilibrium with

respect to the costs Jk, if there exists an ε > 0 such that
for any fixed 1 ≤ i ≤ N , ∀ui ∈ Si, we have

Ji(u
∗
1, . . . , u

∗
i−1, ui, , u

∗
i+1, . . . , u

∗
N ) ≥ Ji(u∗1, . . . , u∗N )− ε.

We define the following technical hypothesis necessary for
the next proof.
Hypothesis 1 (H-1): ∀i ∈ {1, ..., N}; ‖x0i ‖ ≤ Z, where
Z > 0 is independent of N .

Theorem 4: Suppose that H-1 holds. Suppose that
∃λ ∈ {0, ..., N} satisfying (14). Let Σ be the set of
decentralized controls that generates a fixed point of Tλ (i.e.
solution of the optimal tracking problem (3), the tracked
path being equal to the mean). We denote the elements of
Σ by u∗i , i ∈ {1, ..., N}. Then Σ is an ε−Nash equilibrium
with respect to the costs Ji(ui, 1

N

∑N
j=1 xj(uj), x

0
i ) where

ε = o( 1
N ).

Proof: The fixed point x∗ = x̄ of Tλ is given by (11).
By H-1, ‖x̄0‖ ≤ Z. We also have ‖pλ‖ ≤ ‖pa‖+ ‖pb‖. By
continuity of R1 and R2 on [0, T ], we have ‖R1‖∞ ≤ M1

and ‖R2‖∞ ≤ M2 with M1 and M2 independents of N .
Hence, ‖µ‖∞ ≤ Q1, Q1 independent of N . Depending on
their initial positions, the state and control law of each agent
are

xi(u
∗
i ) = φTK(0, t)x0i+

M

r

∫ t

0

φTK(σ, t)BBTφK(σ, T )pe dσ

− q

r

∫ t

0

∫ σ

T

φTK(σ, t)BBTφK(σ, τ)x∗(τ) dτdσ

u∗i = −1

r
BT
(
αxi(u

∗
i )−MφK(t, T )pe

+ q

∫ t

T

φK(t, σ)x∗(σ) dσ
)

where e ∈ {a, b}. The continuity on [0, T ] implies
‖xi(u∗i )‖∞ ≤ Q2 and ‖u∗i ‖∞ ≤ Q3 with Q2 and Q3

independents of N . The boundedness of u∗i , xi(u∗i ) and x∗

implies Ji(u∗i ,
1
N

∑N
j=1 xj(u

∗
j ), x

0
i ) ≤ Q4 with Q4 indepen-

dent of N .



Consider i ∈ {1, ...N}, ui an arbitrary complete state
feedback control law for the agent i. Suppose that

Ji

ui, 1

N

N∑
j=1,j 6=i

xj(u
∗
j ) +

1

N
xi(ui), x

0
i


≤ Ji

u∗i , 1

N

N∑
j=1

xj(u
∗
j ), x

0
i


⇒ Ji

ui, 1

N

N∑
j=1,j 6=i

xj(u
∗
j ) +

1

N
xi(ui), x

0
i

 ≤ Q4

⇒ ‖ui‖ ≤ Q5

with Q5 independent of N . By the boundedness of ‖ui‖
and initial positions, we have ‖xi(ui)‖ ≤ Q6 with Q6

independent of N . The cost that the agent i pays when
switching to alternative startegy to ui is

Ji

ui, 1

N

N∑
j=1,j 6=i

xj(u
∗
j ) +

1

N
xi(ui), x

0
i


=
q

2

∫ T

0

∥∥∥xi(ui)− 1

N

N∑
j=1,j 6=i

xj(u
∗
j )−

1

N
xi(ui)

∥∥∥2 dt

+
r

2

∫ T

0

‖ui‖2 dt+
M

2
min

(
‖xi(T )−pa‖2, ‖xi(T )−pb‖2

)

= Ji

ui, 1

N

N∑
j=1

xj(u
∗
j ), x

0
i


+

q

2N2

∫ T

0

‖xi(ui)− xi(u∗i )‖2 dt

+
q

N

∫ T

0

(
xi(u

∗
i )−xi(ui)

)T(
xi(ui)−

1

N

N∑
j=1

xj(u
∗
j )
)

dt.

By optimality we have

Ji

ui, 1

N

N∑
j=1

xj(u
∗
j ), x

0
i

 ≥ Ji
u∗i , 1

N

N∑
j=1

xj(u
∗
j ), x

0
i

 .

By boundedness of xi(ui), xi(u∗i ) and x∗ we have∥∥∥ q
N

∫ T

0

(xi(u
∗
i )− xi(ui))T (xi(ui)−

1

N

N∑
j=1

xj(u
∗
j )) dt

∥∥∥
≤ Q7

N

with Q7 independent of N . Finally, we deduce

Ji

ui, 1

N

N∑
j=1,j 6=i

xj(u
∗
j ) +

1

N
xi(ui), x

0
i


≥ Ji

u∗i , 1

N

N∑
j=1

xj(u
∗
j ), x

0
i

− Q7

N

Hence, Σ is an ε−Nash equilibrium with respect to the costs
Ji(ui,

1
N

∑N
j=1 xj(uj), x

0
i ), where ε = Q7

N = o( 1
N ).

Theorem 5: Suppose that there exists N0 such that ∀N ≥
N0, max

λ
‖x0λ+1 − x0λ‖ ≤ k 1

N , where k = N |θ2|
2‖β0‖ is in-

dependent of N (i.e. the maximum inter-agent distance is
bounded by O(1/N)). Then ∀N ≥ N0 at most one ε−Nash
equilibrium exists.

Proof: Let aN (λ) = 1
θ2

(
βT0 x

0
λ − δ0 − θ1

)
. ∀N ≥ N0,

|aN (λ+1)−aN (λ)| ≤ 1/2, ∀λ ∈ {1, . . . , N−1}. Consider a
population of size N ≥ N0. Suppose that there exists at least
one ε−Nash equilibrium. Let λ0 be the smallest λ satisfying
(14) (λ0 is well defined because it was supposed that at least
one ε−Nash equilibrium exists). λ0 satisfies aN (λ0) ≤ λ0 <
aN (λ0+1). Suppose that there exists λ0+i satisfying (14) for
some integer i ≥ 0. λ0 + i satisfies aN (λ0 + i) ≤ λ0 + i <
aN (λ0 + i + 1). Therefore, aN (λ0 + i + 1) > λ0 + i ≥
λ0 ≥ aN (λ0). Hence, |aN (λ0 + i + 1) − aN (λ0)| > i. But
|aN (λ0 + i+ 1)− aN (λ0)| ≤ i+1

2 . Hence, i = 0. Thus there
exists at most one ε−Nash equilibrium corresponding to λ
satisfying (14).

Theorems 3 and 4 have three consequences. Firstly, in-
equality (14) implies that for any initial distribution of the
agents, for any λ satisfying this inequality, there exists a
unique ε−Nash equilibrium in which λ agents decide to
go toward pa while the others toward pb. Hence, given
an initial distribution of the agents there might exist many
ε−Nash equilibria corresponding to different λs satisfying
(14). Secondly, a consensus exists if λ = 0 or N satisfying
(14). Finally, even though the developed control laws are
decentralized, each agent needs to know the exact initial
positions of other agents to compute the mean trajectory prior
start moving. This fact can cause some problems when the
number of agents tends to infinity or when just statistical
data about the initial positions are available.

VI. SIMULATION RESULTS

To illustrate the collective decision-making mechanisms,
we consider a population of N = 20 agents with A =
B = I2, pa = −pb = (−10, 0) and T = 1. We consider
three cases where the population starts moving from three
different initial distributions. In the first two cases, we set
q = r = 1 and M = 10000. In the third case, we decrease
M to 1000 and penalize more on the deviation from the
mean by increasing q to 10. For the first case, two different
control strategies generating two distinct ε−Nash equilibria
are possible, whereby for the first strategy 8 agents decide
to go to pa (Fig.1), and 12 agents choose the destination
pa in the second one (Fig.2). For the second case, only one
strategy in which 5 agents decide to go to pa can generate an
ε−Nash equilibrium (Fig.3). For the third case, a consensus
occurs (Fig.4). Moreover, it should be noted that the mean
perfectly replicates the tracked trajectory.

VII. CONCLUSION

We considered in this paper a large population dynamic
game involving a binary choice, and showed that if the
number of agents is finite then there might exist a priori



Fig. 1. First case: First ε−Nash equilibrium

Fig. 2. First case: Second ε−Nash equilibrium

multiple ε−Nash equlibria. Hence, in the absence of an a-
priori convention on how to choose between the available po-
tential equilibria, agents can choose freely between these and
this prohibits the existence of an actual ε−Nash equlibrium.
When the number of agents goes to infinity, these equilibria
collapse to one however. The “miscoordination” between
the agents of low population groups, which can supress
the existence of an actual ε−Nash equilibrium, may be an
additional cause for the absence of decentralized control
strategies in primitively eusocial species of population on the
order of 100 or less [3]. One approach for disambiguation
is to assume that the majority will opt for the alternative
corresponding to the lowest overall mean cost (i.e. the least
damaging ε−Nash equilibrium).
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